Description: Hypercube Algorithms by Sanjay Ranka, Sartaj Sahni The fundamental algorithms are then used to obtain efficient hypercube algorithms for matrix multiplication, image processing problems such as convolution, template matching, hough transform, clustering and image processing transformation, and string editing. FORMAT Paperback LANGUAGE English CONDITION Brand New Publisher Description Fundamentals algorithms for SIMD and MIMD hypercubes are developed. These include algorithms for such problems as data broadcasting, data sum, prefix sum, shift, data circulation, data accumulation, sorting, random access reads and writes and data permutation. The fundamental algorithms are then used to obtain efficient hypercube algorithms for matrix multiplication, image processing problems such as convolution, template matching, hough transform, clustering and image processing transformation, and string editing. Most of the algorithms in this book are for hypercubes with the number of processors being a function of problems size. However, for image processing problems, the book also includes algorithms for and MIMD hypercube with a small number of processes. Experimental results on an NCUBE/77 MIMD hypercube are also presented. The book is suitable for use in a one-semester or one-quarter course on hypercube algorithms. For students with no prior exposure to parallel algorithms, it is recommended that one week will be spent on the material in chapter 1, about six weeks on chapter 2 and one week on chapter 3. The remainder of the term can be spent covering topics from the rest of the book. Notes Springer Book Archives Table of Contents 1 Introduction.- 1.1 Parallel Architectures.- 1.2 Embedding In A Hypercube.- 1.3 Performance Measures.- 2 Fundamental Operations.- 2.1 Data Broadcasting.- 2.2 Window Broadcast.- 2.3 Data Sum.- 2.4 Prefix Sum.- 2.5 Shift.- 2.6 Data Circulation.- 2.7 Even, Odd, And All Shifts.- 2.8 Consecutive Sum.- 2.9 Adjacent Sum.- 2.10 Data Accumulation.- 2.11 Rank.- 2.12 Concentrate.- 2.13 Distribute.- 2.14 Generalize.- 2.15 Sorting.- 2.16 Random Access Read.- 2.17 Random Access Write.- 2.18 BPC Permutations.- 2.19 Summary.- 3 SIMD Matrix Multiplication.- 3.1 n3 Processors.- 3.2 n2 Processors.- 3.3 n2r, 1? r ? n Processors.- 3.4 r2, 1? r ? n Processors.- 3.5 Summary.- 4 One Dimensional Convolution.- 4.1 The Problem.- 4.2 O(M) Memory Algorithms.- 4.3 O(1) Memory MIMD Algorithm.- 4.4 O(l) Memory SIMD Algorithm.- 5 Template Matching.- 5.1 The Problem.- 5.2 General Square Templates.- 5.3 Kirsch Motivated Templates.- 5.4 Medium Grain Template Matching.- 6 Hough Transform.- 6.1 Introduction.- 6.2 MIMD Algorithm.- 6.3 SIMD Algorithms.- 6.4 NCUBE Algorithms.- 7 Clustering.- 7.1 Introduction.- 7.2 NM Processor Algorithms.- 7.3 Clustering On An NCUBE Hypercube.- 8 Image Transformations.- 8.1 Introduction.- 8.2 Shrinking and Expanding.- 8.3 Translation.- 8.4 Rotation.- 8.5 Scaling.- 9 SIMD String Editing.- 9.1 Introduction.- 9.2 Dynamic Programming Formulation.- 9.3 Shared Memory Parallel Algorithm.- 9.4 SIMD Hypercube Mapping.- References. Promotional Springer Book Archives Long Description Fundamentals algorithms for SIMD and MIMD hypercubes are developed. These include algorithms for such problems as data broadcasting, data sum, prefix sum, shift, data circulation, data accumulation, sorting, random access reads and writes and data permutation. The fundamental algorithms are then used to obtain efficient hypercube algorithms for matrix multiplication, image processing problems such as convolution, template matching, hough transform, clustering and image processing transformation, and string editing. Most of the algorithms in this book are for hypercubes with the number of processors being a function of problems size. However, for image processing problems, the book also includes algorithms for and MIMD hypercube with a small number of processes. Experimental results on an NCUBE/77 MIMD hypercube are also presented. The book is suitable for use in a one-semester or one-quarter course on hypercube algorithms. For students with no prior exposure to parallel algorithms, it is recommended that one week will be spent on the material in chapter 1, about six weeks on chapter 2 and one week on chapter 3. The remainder of the term can be spent covering topics from the rest of the book. Details ISBN1461396948 Author Sartaj Sahni Short Title HYPERCUBE ALGORITHMS SOFTCOVER Language English ISBN-10 1461396948 ISBN-13 9781461396949 Media Book Format Paperback Affiliation University of Florida, Gainesville, USA Pages 237 DEWEY 005.1 Year 2011 Publication Date 2011-12-14 Imprint Springer-Verlag New York Inc. Place of Publication New York, NY Country of Publication United States Illustrations IX, 237 p. Subtitle with Applications to Image Processing and Pattern Recognition DOI 10.1007/978-1-4613-9692-5 AU Release Date 2011-12-14 NZ Release Date 2011-12-14 US Release Date 2011-12-14 UK Release Date 2011-12-14 Publisher Springer-Verlag New York Inc. Edition Description Softcover reprint of the original 1st ed. 1990 Series Bilkent University Lecture Series Alternative 9780387973227 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:137828835;
Price: 114.97 AUD
Location: Melbourne
End Time: 2024-11-14T10:17:50.000Z
Shipping Cost: 0 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9781461396949
Book Title: Hypercube Algorithms
Number of Pages: 237 Pages
Language: English
Publication Name: Hypercube Algorithms: with Applications to Image Processing and Pattern Recognition
Publisher: Springer-Verlag New York Inc.
Publication Year: 2011
Subject: Engineering & Technology, Computer Science
Item Height: 244 mm
Item Weight: 435 g
Type: Textbook
Author: Sanjay Ranka, Sartaj Sahni
Item Width: 170 mm
Format: Paperback